Aller au contenu principal

L’Ifip teste des caméras pour détecter les porcelets malades

Les premières analyses d’images en post-sevrage montrent un lien entre la localisation des porcelets dans la case et leur état de santé. Les travaux de l’Ifip à Romillé le démontrent.

Vue de la case depuis la caméra. Les points représentent les centres des porcs détectés. Les rectangles identifient les zones de déjection (en bleu) et d’alimentation (en orange). © Ifip
Vue de la case depuis la caméra. Les points représentent les centres des porcs détectés. Les rectangles identifient les zones de déjection (en bleu) et d’alimentation (en orange).
© Ifip

Les possibilités offertes par l’analyse d’images en élevage sont extrêmement prometteuses. Les premiers résultats d’essais menés à la station expérimentale de l’Ifip sur la détection précoce de pathologies ne peuvent qu’abonder dans ce sens ! Ils montrent notamment un lien entre la localisation des animaux dans la case et leur état de santé. En effet, il est connu depuis longtemps que le porc est un animal qui compartimente son aire de vie en trois parties : zone de défécation, zone d’alimentation et zone de repos. L’analyse du comportement des porcelets en post-sevrage montre que les animaux sains respectent ces délimitations alors que les malades défèquent dans l’intégralité de la case.

Un test en conditions réelles sur la station de Romillé

C’est en partenariat avec l’entreprise canadienne Ro-Main, qui distribue déjà différentes solutions exploitant l’analyse d’images dans les élevages, que l’Ifip a obtenu ces premiers résultats. Un protocole expérimental complet a été mis en place à la station de Romillé. Des caméras ont été fixées au-dessus de six cases de 17 porcelets pour suivre leur déplacement en continu. Toutes les 10 secondes les animaux sont localisés à l’aide d’une procédure d’analyses d’images automatisée. Une fois les porcelets localisés dans la case, leur répartition dans les trois espaces de vie (alimentation, défécation, repos) est mesurée. En parallèle, l’état de santé des animaux est relevé trois fois par semaine par des techniciens expérimentés, selon une grille de notation standardisée. L’objectif est donc de déterminer si la présence ou non d’animaux dans chacune des zones est révélatrice de troubles pathologiques.

Les résultats de la première bande suivie sont extrêmement encourageants pour la suite du projet. En effet, l’algorithme utilisé parvient à détecter 85,76 % des porcelets dans les cases à la fin de l’essai. Même si seulement 44,37 % des animaux sont détectés au début de la bande. Ce faible score s’explique par le regroupement des porcelets pour se tenir chaud qui empêche l’algorithme de les localiser correctement. Pour l’améliorer, un travail est à réaliser sur les conditions d’éclairage des cases. En effet, la part d’animaux détectés est de 77,9 % la journée sur l’ensemble de l’essai. Mais elle passe à 66 % la nuit. L’ajout de lampes infrarouge permet de la remonter à 80,4 %. Malgré des améliorations possibles, les premières données sont bonnes et les détections dans les différentes zones de la case permettent de suivre la répartition des animaux dans les trois aires de vies. Cette répartition semble intimement liée à l’état de santé des animaux, avec une moindre fréquentation de la zone de défécation par les animaux malades. L’hypothèse retenue est que les porcelets atteints de diarrhée (92 % des observations) défèquent dans l’ensemble de la case et non dans la zone initialement dédiée.

Des résultats prometteurs mais une technologie encore jeune

Ces premiers résultats sont en cours de consolidation avec de nouvelles bandes actuellement à l’étude. Un travail est à réaliser sur l’algorithme utilisé pour améliorer le repérage des porcelets. Par exemple, l’un des problèmes majeurs est lié au comportement de regroupement des porcelets en début de post-sevrage. Entassés les uns sur les autres, la détection et le comptage individuel sont impossibles. Pour régler le problème du manque de luminosité qui limite la détection des porcelets, deux solutions sont envisagées, informatique ou matérielle. La première consiste à utiliser des traitements de l’image permettant de limiter l’impact des changements de lumière avant l’analyse pour la localisation. La seconde solution est l’ajout de lampes infrarouges à proximité des caméras. Ces deux solutions peuvent être complémentaires.

Ces informations de localisation sont d’ores et déjà exploitables et valorisables. Elles viennent compléter l’enregistrement des autres données déjà automatisées à la station expérimentale de Romillé : les consommations d’aliment, d’eau et les pesées individuelles permises grâce aux DAC, abreuvoirs et bascules connectées. Toutes ces informations sont regroupées dans une base de données puis analysées à l’aide de méthode de machine learning afin de caractériser le comportement des individus malades. Les résultats obtenus uniquement avec l’abreuvement, l’alimentation et le poids des porcelets étaient déjà prometteurs, les données de localisation devraient encore les améliorer. Les premiers tests arrivaient à une précision de 62,5 % avec la méthode des réseaux de neurones, mais une spécificité trop faible (32,35 %) rend impossible dans l’état un déploiement sur le terrain. L’objectif est d’obtenir un système d’alertes capable de détecter les individus malades sans pour autant envoyer de fausses informations à l’éleveur.

Une base de données disponible pour d’autres applications

La localisation des porcelets dans les cases est un des nombreux applicatifs envisageables grâce à l’analyse d’image. Son déploiement dans les élevages devrait continuer tant son potentiel semble loin d’être atteint. Ce développement est favorisé par les récents progrès technologiques de l’apprentissage automatique (machine learning). Non seulement les caméras peuvent être les yeux des éleveurs, mais il est aujourd’hui d’ores et déjà possible d’en faire de véritables assistants pour de nombreuses applications telles que la pesée des animaux, le comptage des porcs dans un couloir, la détection des truies en chaleur… Ces outils peuvent encore se développer pour permettre de réaliser des tâches plus complexes telles que la détection précoce des pathologies, ou le suivi du bien-être… Le principal avantage de l’analyse d’images est la multiplicité d’indicateurs générés à partir d’un seul et unique capteur (la caméra), ce qui permet de réduire les coûts et de simplifier l’usage de ces nouveaux outils par les éleveurs. Ces promesses sont cependant encore à l’état de développement, notamment la création des algorithmes nécessaires à la valorisation des images.

Le saviez-vous

Les réseaux de neurones sont une des méthodes de machine learning. Son fonctionnement est une imitation du cerveau humain. Les données sont réceptionnées puis analysées par une première couche de neurones. À la sortie de cette couche, l’ensemble des données sont envoyées vers chacun des neurones de la couche suivante. Cette opération est répétée selon le nombre de couches choisies puis le dernier groupe de neurones produit les résultats à partir des données précédentes.

Les plus lus

<em class="placeholder">François Pinsault dans la partie engraissement du bâtiment cochettes : « Ce bâtiment nous permettra de produire sur site 676 cochettes en introduisant seulement 10 ...</em>
« Nous produisons les cochettes pour notre élevage de 1 400 truies »
La SCEA de Bellevue a investi dans un nouveau bâtiment destiné à élever les cochettes nécessaires au renouvellement de son…
<em class="placeholder">« Le silo tour est un investissement structurant » estiment Marie-Pierre Roul, Timothée Roul, 3ème en partant de la gauche, et Emmanuel Chapeau, à droite, ici avec ...</em>
"Avec notre nouveau silo tour, nous augmentons l’autonomie alimentaire de notre élevage de porcs"
À l’occasion d’un agrandissement, le Gaec des Palis a construit un silo tour qui va lui permettre d’optimiser son assolement et d…
<em class="placeholder">Une partie du bureau d&#039;Airfaf :  de gauche à droite : Samuel Morand, Laurent Ferchal (trésorier), Jean-Lou Le Gall (ancien président), Stéphane Demeuré (actuel ...</em>
Alimentation des porcs : « Nous améliorons nos performances grâce à notre fabrique d'aliment à la ferme»

À l’occasion d’une journée organisée par Airfaf Bretagne, Sabine et Stéphane Demeuré ont présenté trois axes de travail sur l’…

<em class="placeholder">Benoît Julhes, Gaec du Puech Laborie :  «L&#039;atelier porc a apporté de la capacité d’autofinancement nécessaire à l’adaptation de l’atelier lait.»</em>
« Mon atelier porc dégage un excédent brut d'exploitation supérieur à mes ateliers bovins »

Benoît Julhes exploite dans le Cantal un atelier porcin de 100 truies naisseur-engraisseur, ainsi que deux troupeaux de vaches…

<em class="placeholder">Guillaume Toquet, accompagné de Virginie (à gauche), l’ancienne salariée de l’atelier porc, et Clémence qui l’a remplacée, ancienne apprentie.</em>
« L’alternance en élevage de porc, c’est du gagnant-gagnant »

Pendant trois ans, Guillaume Toquet a accueilli Clémence en alternance sur son exploitation porcine. Aujourd’hui bien formée,…

<em class="placeholder">Cédric Lemée et son fils, Martin, maîtrisent parfaitement la phase de détection des chaleurs et des inséminations artificielles.</em>
« Je n’ai jamais eu de bandes de truies à moins de 90 % de fertilité »
Le Gaec La Boulaie obtient des performances de fertilité et de prolificité de haut niveau. Une conduite d’élevage…
Publicité
Titre
Je m'abonne
Body
A partir de 90€/an
Liste à puce
Version numérique de la revue Réussir Porc
2 ans d'archives numériques
Accès à l’intégralité du site
Newsletter Filière Porcine
Newsletter COT’Hebdo Porc (tendances et cotations de la semaine)